ABSTRACT

The malnutrition, inflammation and atherosclerosis (MIA) syndrome is associated with increased morbidity-mortality in haemodialysis patients.

The aim of this cross-sectional study was to evaluate the relationship between hydroxyvitaminD3 \([25(OH)D3]\) and 1,25-dihydroxyvitaminD3 \([1,25(OH)_2D_3]\) serum levels and serum markers of inflammation, malnutrition and anaemia in haemodialysis patients.

Laboratory data considered were C-reactive protein (CRP), serum albumin, ferritin, haemoglobin, calcium, phosphorus, intact PTH, \([25(OH)D3]\) and \([1,25(OH)_2D_3]\) serum levels.

We studied 198 prevalent haemodialysis patients with mean age (±SD) of 62.5±15.3 years, 51.5% male, 27% diabetic, mean HD time 43.2±39.3 months. Half of the patients were taking vitamin D, 14% oral calcitriol and 86% IV paricalcitol. All were dialysed with high flux helixone filters, ultrapure water dialysate and on-line haemodiafiltration. Univariate and multivariate analysis were performed and a p<0.05 was considered significant.

\([25(OH)D3]\) mean level was 22.56±15.96ng/ml and \([1,25(OH)_2D_3]\) mean level 6.35±7.63pg/ml.

On univariate and multivariate analysis, \([25(OH)D3]\) was negatively correlated with CRP (r=-0.22; p=0.002; p=0.04), darbepoetin alfa dose (r=-0.23; p=0.004; p=0.04) and positively with albumin (r=0.24; p=0.001; p=0.01) and haemoglobin (r=0.15; p=0.04; p=0.02).

These results suggest that \([25(OH)D3]\) deficiency may play a role in increased inflammation, malnutrition and high morbidity-mortality observed in haemodialysis patients.

Key-words: Haemodialysis; MIA syndrome; vitamin D.

INTRODUCTION

Chronic inflammation is very common in chronic kidney disease stage 5d (CKD5d) and has been identified as playing a key role in atherosclerotic cardiovascular disease\(^5\). The development of inflammation in dialysis is multifactorial and includes factors both related and unrelated to dialysis\(^4\). The lack of renal function per se may decrease the clearance of pro-inflammatory cytokines such as interleukin 1, interleukin 2, interleukin 6 and tumour necrosis factor...
and enhance overall inflammatory responses while the vascular congestion may increase the permeabil-
ity of the gastrointestinal tract leading to endotoxi-
naemia and in turn the release of pro inflammatory
cytokines and the heightened risk of co morbid condi-
tions, including hypercatabolic state or dialysis
access infections, are also a constant in these patients.
Further, dialysis treatment itself can also carry addi-
tional risk factors for inflammation, including the
exposure to dialysis membranes (less biocompatible
ones) or to non ultrapure dialysate.

Recent studies have suggested that inflammation
plays a significant role in malnutrition aetiology (by
the promotion of a catabolic state) and atheroscle-
rosis in uraemic patients. This link has lead to the
so-called MIA (Malnutrition-Inflammation-Atheroscle-
rosis) syndrome. This syndrome describes the
relationship between these three parameters based
on the raised levels of pro inflammatory cytokines.
The poor food intake that results from it can aggra-
vate the anaemia, but the decreased haemoglobin
of these patients may also be the result of inflam-
matory cytokine activation.

Several mechanisms have been proposed for cytokine-induced anaemia, including intestinal bleeding, impaired iron meta-
bolism, suppression of bone marrow erythropoiesis
and of erythropoietin production.

Inflammation, malnutrition and atherosclerosis may explain a large
part of the exceptionally high mortality rate in
dialysis patients.

Unfortunately, there are no proven established
guidelines for the treatment of chronic inflammation
in CKD patients.

In addition to the known effects on bone metab-
olism and calcium-phosphate metabolism, vitamin D and its synthetic analogues, through the activa-
tion of its specific receptors, are responsible for
other actions in several tissues. These pleiotropic
effects include anti proliferative and pro differentia-
tive effects which play a role in many different
fields, including oncology, dermatology and infec-
tious diseases.

The role of vitamin D metabolism has also been
involved in the regulation of blood pressure through
inhibition of the renin-angiotensine pathway and
in the improvement of erythropoiesis by the direct
effect on erythroid precursor proliferation.

Further to that, the active form of vitamin D can also
restore EPO responsiveness by controlling elevated PTH.

Experimental studies with macrophages, vascular
smooth muscle cells and vascular endothelial cells
suggest that vitamin D has anti atherosclerotic effects and, in vivo, its administration improves
immune functions and normalises inflammatory
reactions.

These results show that therapy with activated
forms of vitamin D may open up a new opportunity
to reduce the chronic inflammatory status observed
in uraemic patients.

The aim of this study was to evaluate the relationship
between hydroxyvitamin D [25(OH)D3] and
1,25-dihydroxyvitamin D [1,25(OH)2D3] serum levels
and serum markers of inflammation (C-reactive protein, ferritin), malnutrition (albumin) and anaemia
(haemoglobin and darbepoetin dose).

PATIENTS AND METHODS

Study design

This was an observational, cross sectional study
of a cohort of chronic prevalent haemodi-
alysis patients treated according to the KDOQI
guidelines.

Population

We evaluated 198 prevalent HD patients with a
mean age (±SD) of 62.5±15.3 years, 51.5% males,
27% diabetic, with mean HD time of 43.2±39.3
months. All patients were dialysed with high flux
helixone membranes (Fresenius Medical Care),
ultrapure water dialysate (endotoxine free, mea-
sured by Chromogenic Kinetic LAL assay) and on-
line haemodiafiltration (pre-dilution, 250ml/min of
reinfusion).

Half (49.5%) of the patients were taking vitamin
D receptor activators (VDR), 14% oral calcitriol,
(mean dose 1.1±0.5μg/week) and 86% IV paricalcitol,
(mean dose of 7.3±4.3 μg/week).
Vitamin D, inflammation and malnutrition in prevalent haemodialysis patients – is there a link?

Biochemical analysis

Serum levels of 25(OH)D3 and 1,25(OH)2D3, as well as serum levels of C-reactive protein (CRP), albumin, ferritin, haemoglobin (Hb), calcium, phosphorus, total intact parathyroid hormone (iPTH) and bone alkaline phosphatase (bAP) were measured at the same time and the dose of darbepoetin was collected.

Biochemical analysis including albumin, ferritin, Hb, calcium, phosphorus and bone alkaline phosphatase was performed using standard methods. iPTH was measured by immunoochemiluminescence using a second generation assay and the normal range is 10 to 65 pg/ml. 25(OH)D3 and 1,25(OH)2D3 were determined using radioimmunooassay provided by IDS (Boldon, UK). The assay, after an extraction procedure, is carried out with anti – 25(OH)D3 and anti – 1,25(OH)2D3 ovine antibodies. This is followed by a separation phase with anti ovine IgG antiserum. Intra and inter assay variability are 5 and 8%. The normal range for 25(OH)D3 is 10 to 60 ng/ml and for 1,25(OH)2D3 20 to 46 pg/ml.

We defined for 25(OH)D3 normal serum levels those >30 ng/ml, deficiency serum levels those between 15 and 30 ng/ml and insufficiency serum levels those <15 ng/ml. For 1,25(OH)2D3 we defined normal serum levels those ≥20 pg/ml and deficiency serum levels those <20 pg/ml.

Statistical analysis

Data are presented as mean±SD values for normally distributed variables or as frequencies for categorical variables.

Independent variables were compared using the Mann Whitney and the chi square tests. Correlations between variables were made by the Spearman test for univariate analysis and by logistic regression for multivariate analysis (confidence interval of 95%), with forward method. Variables entered in multivariate analysis were albumin, Hb, CRP and darbepoetin dose.

All tests were performed using the SPSS system 14.0 (SPSS Inc., Chicago, IL) and a p<0.05 was considered statistically significant.

RESULTS

The baseline clinical and biochemical characteristics are summarised in Table I.

Table I
Baseline clinical and biochemical characteristics of the population

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients (n=198)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62.7±15.3</td>
</tr>
<tr>
<td>Male gender</td>
<td>102 (51.5%)</td>
</tr>
<tr>
<td>HD duration (months)</td>
<td>42.9±39.3</td>
</tr>
<tr>
<td>Diabetes</td>
<td>53 (27%)</td>
</tr>
<tr>
<td>Vitamin D therapy</td>
<td>98 (49.5%)</td>
</tr>
<tr>
<td>Calcium (mg/dL)</td>
<td>8.7±0.7 (6.8 - 10.7)</td>
</tr>
<tr>
<td>Phosphorus (mg/dL)</td>
<td>4.5±1.4 (1.7 - 8.7)</td>
</tr>
<tr>
<td>Calcium x Phosphorus (mg/dL)2</td>
<td>48.6±15.5 (16.5 - 83.2)</td>
</tr>
<tr>
<td>Intact PTH (pg/ml)</td>
<td>37.1±33.9 (0.0 - 200)</td>
</tr>
<tr>
<td>Bone alkaline phosphatase (µg/L)</td>
<td>16.8±13.2 (1.1 - 100.3)</td>
</tr>
<tr>
<td>Darbepoetin dose (µg/week)</td>
<td>37.1±35.9 (0.0 - 200)</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>12.4±1.3 (7.8 - 15.3)</td>
</tr>
<tr>
<td>25(OH)D3 (ng/mL)</td>
<td>22.6±15.9 (2.4 - 152.8)</td>
</tr>
<tr>
<td>1,25(OH)2D3 (pg/mL)</td>
<td>6.4±7.6 (0.04 - 49.1)</td>
</tr>
</tbody>
</table>

Serum levels of 25(OH)D3 and 1,25(OH)2D3 were both surprisingly low. Most of the patients (50.5%) were insufficient for 25(OH)D3 and only 17.7% were in the normal range 130 ng/ml. 91.4% of the patients presented 1,25(OH)2D3 deficiency, defined by a serum level below 20 pg/ml. The serum levels of 25(OH)D3 and 1,25(OH)2D3 were positively correlated (r=0.18, p=0.01).

Using the Pearson correlation, serum levels of CRP were negatively correlated with serum levels of albumin (r=-0.27, p<0.0001) and positively correlated with darbepoetin dose (r=0.29, p<0.0001). Albumin besides CRP was also negatively correlated with darbepoetin dose (r=-0.24, p=0.003). Hb was also negatively correlated with darbepoetin dose (r=-0.29, p<0.0001).

We evaluated hypothetical correlations between 25(OH)D3 serum levels (normal, insufficient and deficient), 1,25(OH)2D3 serum levels (normal, deficient) and several clinical and laboratory variables (Tables II and III). A significant negative association was found between 25(OH)D3 and age.
and a positive association between 25(OH)D₃ and albumin. We also found a significant association between lower serum levels of 1,25(OH)₂D₃ and the presence of diabetes. Patients treated with paricalcitol had lower 1,25(OH)₂D₃ serum levels. Also for 1,25(OH)₂D₃ serum levels, a positive association with albumin was found.

On univariate analysis, 25(OH)D₃ was negatively correlated with age (r=-0.31, p<0.001), presence of diabetes (r=-0.16, p=0.03), CRP (r=-0.22, p=0.002), darbepoetin dose (r=-0.23, p=0.004), and positively with albumin (r=0.24, p=0.001) and with HB (r=0.15, p=0.04). Serum levels of 1,25(OH)₂D₃ were also negatively correlated with darbepoetin dose (r=-0.19, p=0.01).

On multivariate analysis, 25(OH)D₃ showed a positive correlation with albumin (p=0.01) and HB (p=0.02) and negative correlation with age (p=0.01), diabetes (p=0.03), CRP (p=0.04) and darbepoetin dose (p=0.04). 1,25(OH)₂D₃ was negatively correlated with darbepoetin dose (p=0.03).

There was no correlation between 25(OH)D₃ or 1,25(OH)₂D₃ and ferritin.

Table II
Comparison of 25(OH)D₃ serum levels and some clinical and laboratory variables

<table>
<thead>
<tr>
<th>25(OH)D₃</th>
<th>Deficiency ≤ 15 ng/ml (n=35)</th>
<th>Insufficiency 15 - 30 ng/ml (n=63)</th>
<th>Normal > 30 ng/ml (n=100)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67.5±15.2</td>
<td>61.6±15.2</td>
<td>57.1±15.9</td>
<td>0.003</td>
</tr>
<tr>
<td>HD duration (months)</td>
<td>50.8±44.5</td>
<td>39.7±38.3</td>
<td>37.9±29.8</td>
<td>NS</td>
</tr>
<tr>
<td>Diabetes</td>
<td>33.3%</td>
<td>22.5%</td>
<td>31.4%</td>
<td>NS</td>
</tr>
<tr>
<td>VDRA therapy</td>
<td>42.9%</td>
<td>55%</td>
<td>45.7%</td>
<td>NS</td>
</tr>
<tr>
<td>Calcium</td>
<td>8.8±0.7</td>
<td>8.8±0.7</td>
<td>8.6±0.7</td>
<td>NS</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>4.4±1.4</td>
<td>4.5±1.4</td>
<td>4.6±1.5</td>
<td>NS</td>
</tr>
<tr>
<td>Intact PTH</td>
<td>274.2±54.5</td>
<td>257.5±167.4</td>
<td>247.3±150.4</td>
<td>NS</td>
</tr>
<tr>
<td>Bone alkaline phosphatase</td>
<td>15.6±10.8</td>
<td>16.5±10.9</td>
<td>20.1±11.2</td>
<td>NS</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>1.1±1.3</td>
<td>0.9±1.4</td>
<td>0.5±0.7</td>
<td>NS</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>12.5±1.2</td>
<td>12.5±1.3</td>
<td>12.5±1.3</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin</td>
<td>4.1±0.4</td>
<td>4.2±0.3</td>
<td>4.3±0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>1,25(OH)₂D₃</td>
<td>4.9±7.7</td>
<td>7.6±7.9</td>
<td>5.5±6.1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

VDRA – vitamin D receptor activators

Table III
Comparison of 1,25(OH)₂D₃ serum levels and some clinical and laboratory variables

<table>
<thead>
<tr>
<th>1,25(OH)₂D₃</th>
<th>Deficiency ≤20 pg/ml (n=181)</th>
<th>Normal >20 pg/ml (n=17)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62.4±15.6</td>
<td>65.7±15.8</td>
<td>NS</td>
</tr>
<tr>
<td>HD duration (months)</td>
<td>42.5±38.0</td>
<td>47.4±22.3</td>
<td>NS</td>
</tr>
<tr>
<td>Diabetes</td>
<td>28.2%</td>
<td>17.6%</td>
<td>0.03</td>
</tr>
<tr>
<td>VDRA therapy</td>
<td>50.8%</td>
<td>35.7%</td>
<td>0.001</td>
</tr>
<tr>
<td>Calcium</td>
<td>8.7±0.7</td>
<td>8.8±0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>4.5±1.4</td>
<td>4.0±1.4</td>
<td>NS</td>
</tr>
<tr>
<td>iPTH</td>
<td>261.5±352.7</td>
<td>245.4±121.4</td>
<td>NS</td>
</tr>
<tr>
<td>Bone alkaline phosphatase</td>
<td>17.0±13.5</td>
<td>15.1±9.7</td>
<td>NS</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>0.9±1.7</td>
<td>0.5±0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>12.4±1.3</td>
<td>12.5±1.2</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin</td>
<td>4.2±0.4</td>
<td>4.3±0.3</td>
<td>0.03</td>
</tr>
<tr>
<td>25-(OH)D₃</td>
<td>22.6±16.5</td>
<td>22.5±8.9</td>
<td>NS</td>
</tr>
</tbody>
</table>
DISCUSSION

This study showed that 25(OH)D3 insufficiency or deficiency is associated to increased inflammation, anaemia and malnutrition observed in haemodialysis patients.

The most important cause of death in CKD5d is cardiovascular disease24 and traditional cardiovascular risk factors alone do not fully explain the cardiovascular disease outcome in these patients25. Inflammation, a non traditional risk factor, plays a key role in atherosclerotic cardiovascular disease7,8,25-27 and if this inflammatory status somehow decreased, our patients would probably live longer.

Uraemia is an inflammatory state and the degree of inflammation can be measured by serum levels of acute phase proteins. These proteins are usually divided into positive (such as CRP, ferritin, fibrinogen) and negative (albumin, fetuin A, transferrin) inflammatory serum markers. Albumin and transferrin are also frequently used as nutritional markers in uraemic patients.

Epidemiological studies have showed that the CRP levels are increased in CKD5d patients28 and these serum levels are independent predictors of all-cause and cardiovascular mortality3,4,27,29,30.

Poor nutritional status also predicts a high risk for morbidity and mortality in haemodialysis patients31-33 and albumin serum levels can reflect the inflammatory status as well as the nutritional status of these patients. Several mechanisms for this association (inflammation vs. malnutrition) have
been suggested and include appetite suppres-
sion34,35 and the promotion of a catabolic state by some pro inflammatory proteins. CRP independently predicts decrease in fat mass over time in haemodialysis patients9.

In our study, CRP and albumin were associated and this result probably illustrates the interrelation-
ship between these two markers.

The increased levels of pro inflammatory cytok-
ines and poor food intake can induce anaemia. Several studies have shown the benefits of Hb target of 11 to 12 g/dl36, and levels 9 g/dl were associated with increased mortality37,38. The most common factors that are associated with failure to achieve Hb target level, despite erythropoietin use, include iron deficiency, hospitalisations, catheters, hyperparathyroidism, hypoalbuminaemia and elevated CRP. In a cross sectional study, an association between erythropoietin resistance and inflammatory markers (CRP, IL 6) was found39.

We found no correlation between Hb levels and inflammatory markers including CRP or albumin. In spite of that, we found a positive correlation between darbepoetin dose and CRP serum levels as well as a negative correlation between darbepoetin dose and albumin serum levels. So, more inflamma-

There are many studies showing laboratory and epidemic association between inflammation and a worse outcome in CKD5d patients. We cannot say the same for studies that evaluate benefits of anti inflammatory therapies.

There are no clear guidelines for the treatment of chronic inflammation in ESRD patients, but several strategies, including minimising exposure to infec-
tions, treating chronic heart failure, dialysing patients with biocompatible membranes and the use of ultra-
pure water have been implemented by many groups.

As to diet supplementation, experimental studies with macrophages, vascular smooth muscle cells and vascular endothelial cells suggest that vitamin D has anti atherosclerotic effects20,21 and, in vivo, its administration improves immune functions5,22 and normalises many inflammatory reactions23,24. A recent study correlated 25(OH)D\textsubscript{3} and some markers of arteriolosclerosis and endothelial dysfunction in CKD5d patients20. Vitamin D was also implicated in the improvement of erythropoiesis by the direct effect on erythroid precursor proliferation18.

Although we are living in a sunny country, the majority of our patients had 25(OH)D\textsubscript{3} insufficiency and 1,25(OH)\textsubscript{2}D\textsubscript{3} deficiency and these two levels were correlated.

The very low levels of calcidiol in this specific population were unexpected. The serum calcidiol concentration is dependent on dermal synthesis and, to a small percentage, the dietary intake of vitamin D40,41. Living in a sunny country, we expected higher values of this vitamin. But we are studying an old population, with mean age of 62.5±15.3 years. The elderly have inadequate sun exposure, the skin of those older than 70 years of age does not convert vitamin D effectively and they also have a poor intake of food (“tea and toast diet”)62. Our results also showed that serum levels of 25(OH)D\textsubscript{3} were negatively associated and correlated with age and positively associated and correlated with serum levels of albumin, which, in addition to being an acute phase protein, is also a nutritional marker.

Deficiency in 1,25(OH)\textsubscript{2}D\textsubscript{3} was expected as these are prevalent haemodialysis patients, with no renal function and with uraemic toxins in circulation41. As plasma calcitriol (1,25(OH)\textsubscript{2}D\textsubscript{3}) concentration is not only a function of the activity of renal tubular cells enzymes, but also of the availability of calcidiol (25(OH)D\textsubscript{3})23,24, these results are consistent.

One interesting data was that patients treated with IV paricalcitol had lower 1,25(OH)\textsubscript{2}D\textsubscript{3} serum levels. This could be explained by the fact that paricalcitol is 19-nor-1,25vitD and we are measuring serum levels of 1,25(OH)\textsubscript{2}D\textsubscript{3}. Besides, perhaps when we give IV paricalcitol to a patient, the organism acts by nega-
tive feedback, reducing 1,25(OH)\textsubscript{2}D\textsubscript{3} production.

In our study we found a correlation between higher serum levels of 25(OH)D\textsubscript{3} and higher serum levels of albumin and Hb, and between higher serum levels of 25(OH)D\textsubscript{3} and lower serum levels of CRP and lower dose of darbepoetin. This association
between higher 25(OH)D₃ serum levels and lower CRP serum levels could mean that 25(OH)D₃ has anti-inflammatory properties.

In our population, 1,25(OH)₂D₃ serum levels were only correlated with lower doses of darbepoetin.

CONCLUSIONS

As the vast majority of the uraemic patients seem to be deficient (or at least insufficient) in 25(OH)D₃ and 1,25(OH)₂D₃ supplementation with these two forms of vitamin D is probably indicated. These results are in accordance with other observational studies, but must be confirmed by prospective randomised trials.

Conflict of interest statement. None declared.

References

Zalmar SA. Metabolism of vitamin D. In: UpToDate, edited by Rose BD, Waltham MA, UpToDate, 2007

Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006;92:4-8

Correspondence to:
Dr Ana Carina Ferreira
Centro de Hemodiálise Hemodial
Quinta da Mina, Lote 3 R/C
2600 Vila Franca de Xira, Portugal
karinadacostafer@hotmail.com